نوع مقاله : علمی ـ پژوهشی
نویسنده
استادیار دانشگاه تهران، تهران، ایران.
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسنده [English]
In Kant’s view, there is no proof in the proper sense of the term as far as philosophical knowledge is concerned; proof applies only to mathematical knowledge, indeed. This is because, Kant believes, mathematical proofs are intuitive and a certainty-conferring argument counts as a proof insofar as it is intuitive. We should therefore see what intuition is for Kant and what the relation is between intuitions and proofs in his philosophy. Drawing on a descriptive-analytic method, this paper seeks first to clarify what Kant means by the intuition in virtue of which a certainty-conferring argument becomes a proof, and then what relation holds between such an intuition and proofs. Is the intuition in question associated with the structure of the proof or is it just associated with preliminaries of the proof? In this paper, I argue that, first of all, the intuition Kant has in mind in his discussion of argument is pure intuition, which, he believes, is exemplified in space and time that are connecting factors of empirical intuitions in understanding—indeed, it is in these two intuitions that all demonstrative and necessary mathematical knowledge is grounded. Secondly, in Kant’s view, the only axioms and preliminaries of proofs are intuitive, which implies that the distinction between proofs and philosophical arguments does not lie in their natures or structures; it lies, instead, in the fact that the premises of a syllogistical arguments are intuitive.
کلیدواژهها [English]